Multiple-gap structure in electric-field-induced surface superconductivity
نویسندگان
چکیده
منابع مشابه
Electric field effect on superconductivity in La22xSrxCuO4
We demonstrate a method to tune the carrier concentration of a high temperature superconductor over a wide range, using an applied electric field. Thin film devices were made in an electrical double layer transistor configuration utilizing an ionic liquid. In this way, the surface carrier density in La2ÿxSrxCuO4 films can be varied between 0.01 and 0.14 carriers per Cu atom with a resulting cha...
متن کاملGap state analysis in electric-field-induced band gap for bilayer graphene
The origin of the low current on/off ratio at room temperature in dual-gated bilayer graphene field-effect transistors is considered to be the variable range hopping in gap states. However, the quantitative estimation of gap states has not been conducted. Here, we report the systematic estimation of the energy gap by both quantum capacitance and transport measurements and the density of states ...
متن کاملNanoparticle Near-Surface Electric Field.
Theoretical studies show that surface reconstruction in some crystals involves splitting the surface atomic layer into two-upper and lower-sublayers consisting of atoms with only positive or only negative effective electric charges, respectively. In a macroscopic crystal with an almost infinite surface, the electric field induced by such a surface-dipole is practically totally concentrated betw...
متن کاملElectric Field and Strain Effects on Surface Roughness Induced Spin Relaxation in Silicon Field-Effect Transistors
The potential of reduction of power consumption and the growth of computational speed achieved by scaling of semiconductor devices is close to exhaustion. Utilizing spin properties of electrons might provide an opportunity for further improvement of the properties of microelectronic-based devices. Since silicon is the main material currently used in microelectronics, we investigate the properti...
متن کاملObservation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy.
It has been predicted that application of a strong electric field perpendicular to the plane of bilayer graphene can induce a significant band gap. We have measured the optical conductivity of bilayer graphene with an efficient electrolyte top gate for a photon energy range of 0.2-0.7 eV. We see the emergence of new transitions as a band gap opens. A band gap approaching 200 meV is observed whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2013
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.87.014505